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Query-processing costs on large text databases are dominated by the need to retrieve and scan the
inverted list of each query term. Retrieval time for inverted lists can be greatly reduced by the use
of compression, but this adds to the CPU time required. Here we show that the CPU component of
query response time for conjunctive Boolean queries and for informal ranked queries can be
similarly reduced, at little cost in terms of storage, by the inclusion of an internal index in each
compressed inverted list. This method has been applied in a retrieval system for a collection of
nearly two million short documents. Our experimental results show that the self-indexing
strategy adds less than 20% to the size of the compressed inverted file, which itself occupies less
than 10% of the indexed text, yet can reduce processing time for Boolean queries of 5–10 terms to
under one fifth of the previous cost. Similarly, ranked queries of 40–50 terms can be evaluated in
as little as 25% of the previous time, with little or no loss of retrieval effectiveness.

Categories and Subject Descriptors: E.4 [Data]: Coding and Information Theory—data com-
paction and compression; H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—indexing methods; H.3.2 [Information Storage and Retrieval]: Information
Storage—file organization; H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—search process
General Terms: Performance
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1. INTRODUCTION

Text databases are widely used as information repositories and can contain
vast quantities of data. Two main mechanisms for retrieving documents
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from these databases are in general use: Boolean queries and ranked
queries. A Boolean query—a set of query terms connected by the logical
operators AND, OR, and NOT—can be used to identify the documents
containing a given combination of terms and is similar to the kind of query
used on relational tables [Salton and McGill 1983]. Ranking, on the other
hand, is a process of matching an informal query to the documents and
allocating scores to documents according to their degree of similarity to the
query [Salton 1989; Salton and McGill 1983].
A standard mechanism for supporting Boolean queries is an inverted file

[Elmasre and Navathe 1989; Fox et al. 1992]. An inverted file contains, for
each term that appears anywhere in the database, a list of the numbers of
the documents containing that term. To process a query, a vocabulary is
used to map each query term to the address of its inverted list; the inverted
lists are read from disk; and the lists are merged, taking the intersection of
the sets of document numbers for AND operations, the union for OR, and
the complement for NOT. For example, if the inverted lists for the three
terms “index,” “compression,” and “algorithm” are

I “index” 5 ^5, 8, 12, 13, 15, 18, 23, 28, 29, 40, 60&

I “compression” 5 ^10, 11, 12, 13, 28, 29, 30, 36, 60, 62, 70&

I “algorithm” 5 ^13, 44, 48, 51, 55, 60, 93&

then the answers to their conjunction are documents 13 and 60. Note that
conjunctive queries—those in which the terms are connected by AND
operators—are, in general, much more useful than disjunctive OR queries.
This is a natural consequence of the fact that the database is large: a
typical term occurs in thousands of documents, and conjunction means that
the set of answers is smaller than any of the inverted lists for the query
terms, whereas disjunction means that documents containing any of the
query terms are answers.
Ranking techniques can also be supported by inverted files. When the

documents are stored in a database that is indexed by an inverted file
several additional structures must be used if evaluation is to be fast
[Buckley and Lewit 1985; Harman and Candila 1990; Zobel et al. 1992].
These include a weight for each word in the vocabulary, a weight for each
document, and a set of accumulators, usually one for each document in the
collection.
Compared with Boolean query evaluation, the principal costs of ranking

are the space in random-access memory and the time required to process
inverted lists. More memory is required because in a ranked query there
are usually many candidates—that is, documents about which information
must be kept because they are potential answers. In a conjunctive Boolean
query, the number of candidates need never be greater than the frequency
of the least common query term; whereas, in a ranked query, every
document in which any of the query terms appears is normally regarded as
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a candidate and is allocated an accumulator in which its score is accrued.
More time is required because conjunctive Boolean queries typically have a
small number of terms, perhaps 3–10, whereas ranked queries usually have
more. In a conjunctive Boolean query the answers lie in the intersection of
the inverted lists, but in a ranked query, they lie in the union; so adding
more terms to a ranked query broadens the search rather than narrowing
it. Adding terms also means that more disk accesses into the inverted file
are required, and more time must be spent merging. Moreover, the larger
number of terms in a ranked query, and the fact that ranked queries are
often English text, means that long inverted lists must be scanned, since it
is likely that at least some of the terms in a ranked query occur in many of
the documents.
The high cost of processing inverted lists is exacerbated if, for space

efficiency, the inverted lists are stored compressed. Without compression,
an inverted file can easily be as large or larger than the text it indexes.
Compression results in a net space reduction of as much as 80% of the
inverted file size [Bell et al. 1993], but even with fast decompression—
decoding at approximately 400,000 numbers per second on a Sun Sparc
10—it involves a substantial overhead on processing time.
Here we consider how to reduce these space and time costs, with

particular emphasis on environments in which index compression has been
used. We describe a mechanism for adding a small amount of information
into each inverted list so that merging operations can, in most cases, be
performed in time sublinear in the length of the lists being processed. This
self-indexing strategy has been tested on a database containing almost two
million “pages” of text totaling 2GB. For typical conjunctive Boolean
queries of five to ten terms the query-processing time is reduced by a factor
of about five. Furthermore, the overhead in terms of storage space is small,
typically under 20% of the inverted file, or about 2% of the text being
indexed, since the use of index compression allows a full document-level
inverted index to be stored in about 10% of the space required by the source
collection. These results are not only better than those previously obtained
for inverted file indexing, but are also better than can be obtained by bit
string or bit slice signature files.
For ranked queries, we show that by effectively switching from a disjunc-

tive query to a conjunctive query at some predetermined point in the
processing of terms, the number of candidates can be dramatically cut
without adversely affecting retrieval effectiveness. We then show that
self-indexing inverted files allow the time required to process ranked
queries to be reduced by a factor of between two and four.
Section 2 describes the structures used by document databases, and it

describes the Boolean and ranked retrieval paradigms examined here. Our
test database is described in Section 3. Section 4 introduces the notion of a
self-indexing inverted file and analyzes the performance improvement
produced. Experiments are given that show the efficacy of the method on
Boolean queries. Section 5 discusses methods by which the space required
for ranked queries can be restricted and shows how this restriction can,
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together with internal indexing in each inverted list, be used to improve
query evaluation time for ranked queries. Conclusions are presented in
Section 6. A table of mathematical symbols (Table VIII) is provided at the
end of the article.

2. DOCUMENT DATABASES

In an inverted-file document database, each distinct word in the database
is held in a vocabulary [Buckley and Lewit 1985; Fox et al. 1992; Harman
and Candela 1990; Lucarella 1988; McDonell 1977; Zobel et al. 1992]. The
vocabulary entry for each word contains an address pointer to an inverted
list (also known as a postings list), a contiguous list of the documents
containing the word. Each document is known by a unique identifier, which
we assume to be its ordinal number. To support efficient query processing
the vocabulary should also hold for each term t the value ft, the number of
documents that contain t. Knowledge of the value ft allows inverted lists to
be processed in order of increasing frequency, which is crucial for the
algorithms below.
The inverted list for each word stores a list of the documents d that

contain that word, and this is sufficient to allow evaluation of Boolean
queries. To support ranking, the “within-document frequency” fd,t is also
stored with each document number d in each inverted list [Harman and
Candela 1990]. This allows the weight of each word in each document to be
computed. In the absence of compression four bytes and two bytes respec-
tively might be allocated for the d and fd,t values, that is, six bytes for each
^d, fd,t& pointer. Using compression the space required can be reduced to
about one byte per pointer [Bell et al. 1993]. On the 2GB TREC collection,
described below, these methods compress the inverted file from 1100MB to
184MB, an irresistible saving.

2.1 Compressing Inverted Files

Techniques for compressing inverted lists, or equivalently bitmaps, have
been described by many authors, including Bell et al. [1993], Bookstein et
al. [1992], Choueka et al. [1988], Fraenkel and Klein [1985], Klein et al.
[1989], and Linoff and Stanfill [1993]. Faloutsos [1985a; 1985b] described
the application of similar techniques to the compression of sparse signa-
tures.
Our presentation is based on that of Moffat and Zobel [1992], who

compare a variety of index compression methods. To represent each in-
verted list, the series of differences between successive numbers is stored
as a list of run-lengths or d-gaps. For example, the list

5, 8, 12, 13, 15, 18, 23, 28, 29, 40, 60

of document numbers d can be equally well stored as a list of d-gaps:

5, 3, 4, 1, 2, 3, 5, 5, 1, 11, 20.
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One consequence of this representation is that small gaps are common,
since frequent words must of necessity give rise to many small gaps. Hence,
a variable-length encoding of the integers in which small values are stored
more succinctly than long values can achieve a more economical overall
representation than the more usual flat binary encoding.
Elias [1975] described a family of “universal” codes for the positive

integers that are at most a constant factor inefficient for any nonincreasing
probability distribution. His g code represents integer x as log2x 1 1 in
unary (that is, log2 x 1-bits followed by a 0-bit) followed by x 2 2log2x

in binary (that is, x less its most significant bit); the d code uses g to code
log2 x 1 1, followed by the same suffix. Some sample values of codes g and
d are shown in Table I; both codes use short codewords for small integers
and longer codewords for large numbers. In Table I, commas have been
used to separate the suffixes and prefixes; these are indicative only, and
are not part of the compressed string. The d code is longer than the g code
for most values of x smaller than 15, but thereafter d is never worse, and
for integer x requires log2 x 1 O(log log x) bits. The codes are both prefix
free—no codeword is a prefix of another—and so unambiguous decoding
without backtracking is possible.
The g and d codes are instances of a more general coding paradigm as

follows [Fraenkel and Klein 1985; Moffat and Zobel 1992]. Let V be a vector
of positive integers vi, where vi $ N, the number of documents in the
collection. To code d-gap x $ 1 relative to V, find k $ 1 such that

O
j51

k21

vj , x # O
j51

k

vj

and code k in some representation followed by the remainder

r 5 x 2 O
j51

k21

vj 2 1

Table I. Examples of Codes

x

Coding Method

Elias, g Elias, d
Golomb,
b 5 3

1 0, 0, 0,0
2 10,0 100,0 0,10
3 10,1 100,1 0,11
4 110,00 101,00 10,0
5 110,01 101,01 10,10
6 110,10 101,10 10,11
7 110,11 101,11 110,0
8 1110,000 11000,000 110,10
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in binary, using either log2 vk bits if r , 2log2 vk 2 vk or log2 vk bits
otherwise. In this framework the g code is an encoding relative to the
vector (1, 2, 4, 8, 16, . . .), with k coded in unary.
Consider another example. Suppose that the coding vector is (for some

reason) chosen to be (9, 27, 81, . . .). Then if k is coded in unary, the values
one through to seven would have codes “0,000” through to “0,110”, with
eight and nine as “0,1110” and “0,1111” respectively, where again the
comma is purely indicative. Similarly, run-lengths of 10 through 36 would
be assigned codes with a “10” prefix and either a four-bit or a five-bit suffix:
“0000” for 10 through “0100” for 14, then “01010” for 15 through “11111” for
36.
Golomb [1966] and Gallager and Van Voorhis [1975] also considered

prefix-free encodings of the integers. They showed that coding relative to
the vector

VG 5 ~b, b, b, b, . . .!

for

b 5  log~2 2 p!

2log~1 2 p!
generates an optimal set of prefix-free codes for the geometric distribution
with parameter p. That is, if a term appears in each document indepen-
dently with probability p, the probability of a d-gap of length x is given by
(1 2 p)x21p, and the Golomb code with parameter b is, in effect, a
Huffman code for this infinite distribution. The final column of Table I
shows a subset of the Golomb codes generated when b 5 3. This is an
optimal assignment of codewords when 0.1809 , p , 0.2451 (approxi-
mately).
The effectiveness of compression for an inverted list varies with the

choice of coding vector, and it depends upon the extent to which the
probability distribution implied by the vector differs from the “actual”
distribution. In practice, term distribution is not random among docu-
ments, and so the Golomb code can be improved upon. Details of some
alternative methods and experimental results may be found elsewhere
[Bell et al. 1993; Moffat and Zobel 1992]. In most cases the improvement is
relatively small, and in the remainder of this article we assume that d-gaps
in inverted lists are represented using a Golomb code, with the parameter b
chosen appropriately for each inverted list.
The within-document frequencies fd,t stored in the inverted lists must

also be coded; and Elias’ g code is a suitable method [Bell et al. 1993;
Moffat and Zobel 1992].

2.2 Boolean Query Evaluation

Suppose that a conjunctive Boolean query is being processed. Each query
term is located in the vocabulary, which might be resident in memory, if
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space is available, or might be on disk. In the latter case, one disk access
per term is required. The next step is to sort the terms by increasing
frequency, and all subsequent processing is carried out in this order. The
inverted list for the least frequent term is then read into memory. This list
establishes a set of candidates, documents that have not yet been elimi-
nated and might be answers to the query [Choueka et al. 1987].
The other terms are then processed. As each inverted list is read, each

candidate remaining is checked off against that list. Unless a candidate
appears in all lists it cannot be an answer, so any candidate absent from
any list can be eliminated. The set of candidates is thus nonincreasing.
When all inverted lists have been processed, the set of remaining candi-
dates (if any) are the desired answers. This strategy is summarized in
Figure 1.
There are two points to note about this evaluation method. The first

point concerns the selection of the least frequent term at step 2. This is for
efficiency. Suppose that term l is the least frequent and that it appears in fl
documents. Then for a conjunctive query the set of candidates will never
contain more than fl entries, and space usage can be minimized. Processing
the remaining terms in increasing frequency order is a heuristic intended
to quickly reduce the number of candidates to zero, at which point no
further terms at all need be considered. A query for which the set of
candidates reaches zero is not particularly informative; nevertheless, a
surprising fraction of actual queries have exactly this result.
The second point concerns the process carried out at step 4b. In this step,

each of a relatively small set of candidates is tested for membership in a
comparatively long inverted list. Suppose at first that the inverted list is
uncompressed. When uC u ' uItu, the most efficient strategy is a linear merge,
taking O( uC u 1 uItu) 5 O( uItu) time. This is, however, the exceptional case.
More normally, uC u ,, uItu, and it is far more efficient to perform a sequence
of binary searches taking O( uC uloguItu) time, or even a sequence of fingered
exponential and binary searches [Hwang and Lin 1972] taking time
O( uC ulog(uItu/uC u)). Each inverted list must still be read from disk; so the
overall time to process term t is O( uItu 1 uC ulog(uItu/uC u)) 5 O( uItu), and the

1. For each query term t,
(a) Search the vocabulary for t.
(b) Record ft and the address of It, the inverted list for t.

2. Identify the query term t with the smallest ft.
3. Read the corresponding inverted list. Use it to initialize C, the list of candidates.
4. For each remaining term t, in increasing order of ft,

(a) Read the inverted list, It.
(b) For each d [ C, if d ¸ It then set C 4 C 2 {d}.
(c) If uC u 5 0, return, since there are no answers.

5. For each d [ C,
(a) Look up the address of document d.
(b) Retrieve document d and present it to the user.

Fig. 1. Evaluation of conjunctive Boolean queries.
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cost of processing the entire query is O( tuItu); nevertheless, substantial
CPU savings can be achieved.
Binary search is only possible if the document numbers are in sorted

order within list It and if they can be accessed in an array-like manner. The
use of compression makes random access difficult (but not impossible
[Moffat et al. 1995]), because the resulting nonuniform lengths in bits make
it impractical to jump into the middle of a compressed inverted list and
decode a document number. This means that if the inverted file is com-
pressed, not only must a linear merge be used irrespective of the length of
the inverted list, but each inverted list must be fully decompressed in order
to do so. The cost is still O( tuItu), but the constant factor is large. At face
value, then, the use of compression saves a great deal of space in the
inverted file, but imposes a substantial time penalty during conjunctive
query processing. Reducing this overhead is the problem addressed in this
article.

2.3 The Cosine Measure

Another important retrieval paradigm is ranking, in which each document
is assigned a numeric score indicating similarity with the query, and then
the documents that score the highest are displayed as answers. The
ranking technique we use in this article is the cosine measure [Salton 1989;
Salton and McGill 1983]. It estimates the relevance of a document to a
query via the function

cosine~q, d! 5
Otwq,t z wd,t

ÎOtwq,t
2 z ÎOtwd,t

2
,

where q is the query; d is the document; and wx,t is the weight (or
“importance”) of word t in document or query x. The expression

Wx 5 ÎO
t
wx,t

2

is a measure of the total weight or length of document or query x in terms
of the weight and number of words in x. The answers to a ranked query q
are the r documents with the highest Cd 5 cosine(q, d) values, for some
predetermined bound r.
One commonly used function for assigning weights to words in document

or query x is the frequency-modified inverse document frequency, described
by

wx,t 5 fx,t z log~N/ft !,

where fx,t is the number of occurrences of word t in x; N is the number of
documents in the collection; and ft is the number of documents containing
t. This function allots high weights to rare words, on the assumption that
these words are more discriminating than common words; that is, the
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presence of a rare word in both document and query is assumed to be a
good indicator of relevance.
The cosine measure is just one method that can be used to perform

ranking, and there are many others—see, for example, Harman [1992b] or
Salton [1989] for descriptions of alternatives. The cosine measure suits our
purposes because, if anything, it is one of the more demanding similarity
measures, in that the similarity value assigned to each document depends
not just upon that document, but also upon all of the other documents in
the collection.

2.4 Ranked Query Evaluation

The usual method for determining which of the documents in a collection
have a high cosine measure with respect to a query is to compute cosine
from the inverted-file structure and document lengths [Buckley and Lewit
1985; Harman 1992b; Harman and Candela 1990; Lucarella 1988]. In this
method, an accumulator variable Ad is created for each document d
containing any of the words in the query, in which the result of the
expression twq,t z wd,t is accrued as inverted lists are processed. A simple
form of this query evaluation algorithm is shown in Figure 2. Note that the
partial ordering required by step 4 can be performed efficiently using a
priority queue data structure such as a heap, and there is no need for the
set of Cd values to be completely ordered. Mechanisms for doing this are
discussed by Witten et al. [1994].
The evaluation technique in Figure 2 supposes that the document

lengths—the values Wd—have been precalculated. They are query invari-
ant, so for efficiency they should be computed at database creation time.
The effect of applying them is to reorder the ranking, sometimes signifi-
cantly. Moreover, there are usually many documents for which Ad . 0 at
the completion of step 2, since any documents listed in any of the inverted
lists have this property. This means that the number of accesses to the
document lengths is usually many times greater than the number of
answers; and if the document lengths are stored on disk, these accesses
could become the dominant cost of answering queries.

1. For each document d in the collection, set accumulator Ad to zero.
2. For each term t in the query,

(a) Retrieve It, the inverted list for t.
(b) For each ^document number d, word frequency fd,t& pointer in It set Ad 4 Ad

1 wq,t z wd,t.
3. For each document d, calculate Cd 4 Ad/Wd, where Wd is the length of document d,

and Cd the final value of cosine(q, d).
4. Identify the r highest values of Cd, where r is the number of records to be presented

to the user.
5. For each document d so selected,

(a) Look up the address of document d.
(b) Retrieve document d and present it to the user.

Fig. 2. Algorithm for computing cosine and returning r answers.
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One technique that has been suggested for avoiding this bottleneck is to
store, in the inverted lists, not the raw fd,t values described above, but
instead scaled values fd,t/Wd [Buckley and Lewit 1985; Lucarella 1988].
Such scaling is, however, incompatible with index compression: it does
reduce memory requirements, but this reduction comes at the cost of a
substantial growth in the size of the inverted file.
An alternative is to use low-precision approximations to the document

weights, which can reduce each document length to around six bits without
significantly affecting retrieval effectiveness or retrieval time [Moffat et al.
1994]. Furthermore, in a multiuser environment the cost of storing the
weights can be amortized over all active processes, since the weights are
static and can be stored in shared memory.
Use of these techniques leaves the accumulators Ad as the dominant

demand on main memory. They cannot be moved to disk, since they are
built up in a random-access manner; they cannot conveniently be com-
pacted into fewer bits, because of the processor time required by the
necessary transformations and the large number of times the transforma-
tion must be carried out; and they cannot be shared, since they are query
specific. We shall return to this problem—how best to represent the
accumulators—in Section 5.

3. TEST DATA

The database used for the experiments reported in this article is TREC, a
large collection of articles on finance, science, and technology that were
selected as test data for an ongoing international experiment on informa-
tion retrieval techniques for large text collections [Harman 1992a]. These
articles vary in length from around 100 bytes to over 2MB; as part of other
current research, we have broken the longer documents into pages of
around 1000 bytes, to ensure that retrieved text is always of a size that can
be digested by the user [Zobel et al. 1995]. It is the problems encountered
with the large number of resulting records that prompted the research in
this article. In the paged form of TREC there are 1,743,848 records totaling
2054.5MB, an average of 191.4 words per record, and 538,244 distinct
words, after folding all letters to lowercase and removal of variant endings
using Lovin’s stemming algorithm [Lovins 1968]. The index comprises
195,935,531 stored ^d, fd,t& pointers.

3.1 Boolean Queries

To measure the time taken by Boolean operations, a set of 25 lists of terms
was constructed, each list containing 50 words. To construct each list, a
page of the collection was selected at random. The words of the page were
then case-folded, and duplicates were removed, as were a set of 601
frequently occurring stopwords—that is, words such as “also” and “be-
cause,” which can in most contexts be ignored because they have low
information content. The remaining list of words was then counted, and
lists containing fewer than 50 terms were replaced.
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This mechanism generated queries with at least one guaranteed answer
each—namely, the document from which the text was selected—and en-
sured that query processing could not terminate before all terms in any
particular list had been inspected. Figure 3 shows the 50 words comprising
the first two lists, in the order in which they appeared in the text. We
wanted 50-term lists, not because we believe that 50-term queries are
typical, but because any subset of these lists would have at least one
answer; that is, they allowed us to test performance on queries with any
number of terms from 1 to 50. For example, the four-term queries corre-
sponding to Figure 3 were “embattled AND systems AND vendor AND
prime” and “expanded AND memory AND equipment AND suppose”.
Table II shows the number of answers and the number of inverted-file

pointers considered during the processing of the queries, for some of the
query sizes used in the experiments. Queries of perhaps 3–10 terms are the
norm for general-purpose retrieval systems. Note that we regarded an
answer to be a document rather than a page of the document and that any
particular document might have more than one matching page; this is the
reason, for example, why the 72,000 pointers considered in the single-term
queries resulted in only 51,000 answers.
On average each term used in these queries appeared in about 60,000

pages of the collection. Thus, by the time four terms of any query have been
considered, on average uC u ' 60 and uItu ' 60,000 at each execution of step
4b in Figure 1. These typical values will be used in the time estimates
made in Section 4.

3.2 Ranked Queries

Ranking techniques are tested by applying them to standard databases and
query sets, in which the queries have been manually compared to the
documents to determine relevance. The TREC data are suitable for experi-
ments with ranking both because of their size and because test queries and
relevance judgments are available. The test queries are 50 “topics,” or
statements of interest. For each of these topics, some thousands of likely
documents have been manually inspected to yield relevance judgments. A
sample topic is shown in Figure 4.

embattled systems vendor prime computer natick mass purchase debts wholly owned
subsidiary cad cam vision bedford principal amount debentures 110 million presently
convertible 333 33 bonds officials made time open market represents attractive investment
current prices fending hostile takeover bid mai basic tustin calif week lost battle district
court boston

expanded memory equipment suppose computer 640k ram runs finish building worksheet
solve problem install board lets work data fit dos limit ideal solution boards expensive intel
corp 800 538 3373 oreg 503 629 7369 2 megabytes costs 1 445 configured software buy 3
releases 01 growing number programs release os

Fig. 3. Sample Boolean queries.
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Retrieval effectiveness, or measurement of ranking performance, is usu-
ally based on recall (the proportion of relevant documents that have been
retrieved) and precision (the proportion of retrieved documents that are
relevant) [Salton and McGill 1983]. For example, if for some query there
are known to be 76 relevant documents, and some query evaluation
mechanism has retrieved 100 documents of which 26 are relevant, the
precision is 26/100 5 26%, and the recall is 26/76 5 34%. In this article we
have calculated retrieval effectiveness as an 11-point average, in which the
precision is averaged at 0%, 10%, . . . , 100% recall; because of the size of
the TREC collection, the recall-precision is based upon the top 200 re-
trieved documents rather than on a total ranking. This was the methodol-
ogy employed during the initial TREC experiment [Harman 1992a], and we
have chosen to continue with this convention.
From each of the TREC topics we extracted two sets of query terms. To

create the first set we removed all nonalphabetic characters and case-
folded and stemmed the resulting words. This gave a set of 50 queries
containing, on average, 124.2 terms, 64.6 distinct terms, and involving, on
average, 21,600,000 of the ^d, fd,t& pointers, or 330,000 pointers per term
per query.

Table II. Processing of Sample Boolean Queries

Number of Terms Average Answers Average t uItu

1 51,450 72,323
2 4,780 168,257
4 58.7 293,256
8 1.16 510,361
16 1.00 942,837
32 1.00 1,857,513

Domain: International Economics

Topic: Rail Strikes

Description: Document will predict or anticipate a rail strike or report an ongoing rail strike.
Narrative: A relevant document will either report an impending rail strike, describing the

conditions which may lead to a strike, or will provide an update on an ongoing
strike. To be relevant, the document will identify the location of the strike or
potential strike. For an impending strike, the document will report the status
of negotiations, contract talks, etc. to enable an assessment of the probability
of a strike. For an ongoing strike, the document will report the length of the
strike to the current date and the status of negotiations or mediation.

Concept(s):
1. rail strike, picket, stoppage, lockout, walkout, wildcat
2. rail union, negotiator, railroad, federal conciliator, brotherhood
3. union proposal, talks, settlement, featherbedding, cost cutting
4. working without a contract, expired contract, cooling-off period

Fig. 4. Sample test topic.
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The second set of query terms was constructed from the first by eliminat-
ing stopwords. This query set had, on average, 42.4 distinct terms per
query, 3,221,000 pointers processed per query, and 76,000 pointers per
term per query. The “stopped” query generated from the topic shown in
Figure 4 is shown in Figure 5. The superscripts indicate multiplicity;
because the queries are small documents in themselves, we allowed multi-
ple appearances of terms to influence the weighting given to that term.
As is demonstrated below, the two query sets yield similar retrieval

performance, and for the bulk of the results presented here we chose to use
the second query set, because a stoplist would normally be applied to
queries in production systems to minimize processing costs.
However, we also experimented with the unstopped queries. There were

several reasons for this. First, we have been interested in mechanisms for a
smooth transition from words that are included to words that are excluded,
rather than the abrupt transition given by stopping. For example, each of
the words “american”, “computer”, “journal”, and “washington” occur in
over 100,000 TREC pages; they could be stopped on the basis of frequency,
but do provide a little discrimination and may be the key to effective
retrieval for some queries. Second, there are some languages that are
inherently unstoppable: for example, in Arabic and Hebrew most words are
ambiguous. Finally, using the unstopped queries to some extent mimics the
performance of a database an order of magnitude larger in which stopwords
are applied—the most frequent unstopped term in a 20GB collection would
have about the same frequency as words such as “the” in the 2GB TREC
collection. That is, we seek to demonstrate that our techniques are scalable.
For this reason we did not apply a stoplist while constructing the index;

the sizes reported below are for an index that records every word and every
number. The decision as to whether or not a stoplist is applied is made at
query time and in general should not be preempted by decisions made when
the index is created.

4. FAST INVERTED FILE PROCESSING

Let us now consider the cost of evaluating conjunctive Boolean queries. The
strategy described in Figure 1 is potentially slow because the inverted list
of every query term is completely decoded.
Suppose that k 5 uC u candidates are to be checked against a compressed

inverted list containing p pointers ^d, fd,t&. Suppose further that it costs td

. document5 predict1 anticipate1 rail5 strike12 report4 ongoing3 relevant2 impending2 describ-
ing1 conditions1 lead1 provide1 update1 identify1 location1 potential1 status2 negotiations2

contract3 talks2 enable1 assessment1 probability1 length1 current1 date1 mediation1 picket1

stoppage1 lockout1 walkout1 wildcat1 union2 negotiator1 railroad1 federal1 conciliator1

brotherhood1 proposal1 settlement1 featherbedding1 cost1 cutting1 working1 expired1 cool-
ing1 period1

Fig. 5. Sample ranked query.
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seconds to decode one pointer. Then, the total decoding cost Td in process-
ing this one inverted list is approximated by

Td 5 td p,

assuming, pessimistically, that the pointers are randomly distributed in
the list and that one pointer occurs close to the end. The whole list must be
decoded to access this last pointer because, as described in Section 2, it is
not possible to randomly access points in a compressed inverted list. That
is, the first bit of the compressed list is, conventionally, the only point at
which decoding can commence.
However, while every inverted list must be processed, not every ^d, fd,t&

pointer is required—in a conjunctive query all that is necessary is for each
candidate to be checked for membership in the current inverted list. This
observation allows processing time to be reduced in the following manner.

4.1 Skipping

When k ,, p, faster performance is possible if synchronization points—
additional locations at which decoding can commence—are introduced into
the compressed inverted list. For example, suppose that p1 synchronization
points are allowed. Then the index into the inverted list contains p1
“document number, bit address” pointers and can itself be stored as a
compressed sequence of “difference in document number, difference in bit
address” run lengths. If these compressed values are interleaved with the
run lengths of the list as a sequence of skips, a single self-indexing inverted
list is created.
For example, consider the set of ^d, fd,t& pointers

^5, 1&^8, 1&^12, 2&^13, 3&^15, 1&^18, 1&^23, 2&^28, 1&^29, 1&. . . .

Stored as d-gaps, these are represented as

^5, 1&^3, 1&^4, 2&^1, 3&^2, 1&^3, 1&^5, 2&^5, 1&^1, 1&. . . .

With skips over (say) every three pointers, the inverted list becomes a
sequence of groups of three pointers each, with skips separating the groups.
The example list corresponds to

^^5, a2&&^5, 1&^3, 1&^4, 2&^^13, a3&&^1, 3&^2, 1&^3, 1&

^^23, a4&&^5, 2&^5, 1&^1, 1&^^40, a5&&. . . ,

where a2 is the address of the first bit of the second skip pointer; a3 is the
address of the first bit of the third skip, and so on. This format still
contains redundancy, in that both the list of document numbers in the
skips and the list of bit addresses can be coded as differences, and the first
document number in each set of three ^d, fd,t& values is now unnecessary.
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Incorporating these changes, the final inverted list becomes

^^5, a2&&^1&^3, 1&^4, 2&^^8, a3 2 a2&&^3&^2, 1&^3, 1&

^^10, a4 2 a3&&^2&^5, 1&^1, 1&^~17, a5 2 a4&&. . . .

To access the compressed list to see if document d appears, the first skip is
decoded to obtain the address a2 of the second skip, which is also decoded.
If the document numbers d1 and d2 implied by these skips are such that
d1 # d , d2, then if d appears it is in this first group, and only that group
need be decoded. If d2 # d, the second skip is traced to locate the third,
and enough information is on hand to decide whether d lies in the second
group. In this case the first group need never be decoded, and some
processing time has been saved, at the expense of increasing the size of the
inverted list.
Section 2 describes several methods by which the two values coded into

each skip can be represented. The Golomb code is particularly well suited
for coding the skips, as all of the groups in the compressed inverted list are
roughly the same length. In the results given below, a Golomb code is used
for both the inverted lists and the two components of the skips inserted into
each.

4.2 Analysis

The benefits of skipping are estimated as follows. If there are k 5 uC u
document numbers to be checked against an inverted list of p 5 ft 5 uItu
pointers, then on average half of each of k groups will need to be decoded,
one half-group for each candidate document d. It is also likely that almost
all of the skips will need to be decoded, since they themselves constitute a
file of variable-length compressed records, a miniature of the original
problem. Allowing two units of decoding time for each skip processed (each
of the two values stored in a skip occupies about the same number of bits as
a ^d, fd,t& pointer), and using the notation introduced above, we have

Td 5 tdS2p1 1
kp

2p1
D .

This is minimized when

p1 5
Îkp
2

,

resulting in

Td 5 2tdÎkp 5 O~ ÎuC u z uItu!.

Taking sample values of k 5 60, p 5 60,000, and td 5 2.5 3 1026

seconds (the last being the measured rate of decoding on a Sun Sparc 10
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Model 512), the use of indexing is estimated to reduce the decoding and
searching time from 0.150 seconds without any skipping to 0.009 seconds
with skipping.
The saving in processing time does not, however, come without cost. In

the same example, p/p1 ' 63, and so the inverted list grows by roughly two
pointers for every 63 pointers, a 3% overhead. (This accounting is some-
what pessimistic, since one of the pointers is partially compensated for by
the document number that is saved in the group; it is, however, a conve-
nient approximation.) Before claiming the usefulness of the technique, we
should confirm that the cost of reading this extra data into memory does
not outweigh the CPU saving. Let tr denote the cost of reading one ^d, fd,t&
pointer into memory as part of a bulk read. Then the total elapsed time T
required to search one inverted list is given by

T 5 tdS2p1 1
kp

2p1
D 1 tr~ p 1 2p1 !,

which is minimized at

p1 5
Îkp/~1 1 tr /td!

2
.

Assuming that tr 5 0.5 3 1026 seconds, which at one byte per pointer
corresponds to a transfer rate of about 2MB per second, and including the
cost of reading the inverted list into memory, the time taken to process the
60 candidates can be reduced from 0.180 seconds to approximately 0.040
seconds.
The time to process a self-indexing compressed inverted list also com-

pares well with the time required to perform the same operations on an
uncompressed inverted list. In this case Td is effectively zero, since the
inverted list can be binary-searched very quickly for document numbers.
However, at six bytes per pointer (four for the document number d, and two
for fd,t, the within-document frequency), tr 5 3 3 1026 seconds, so that
just reading an inverted list with p 5 60,000 entries requires Tr 5 0.180
seconds. This can be reduced to 0.120 seconds if the within-document
frequencies fd,t are dispensed with and only Boolean queries supported, but
even so is greater than the time calculated above. Inserting skips and
compressing inverted lists allow both disk space and query processing time
to be reduced.
All of these times are exclusive of the cost of searching the lexicon for the

term and of seeking in the inverted file to the location of the desired
inverted list. At typical CPU and disk speeds these operations might add a
further 0.020 seconds for each term in the query. Here again compression
serves to improve performance: the compressed inverted file is about one
sixth the size of an uncompressed equivalent, so average seek times are
less.
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Scaling these calculations to the average situation encountered in the
Boolean TREC queries, a query of 10 terms might be expected to require
0.6 seconds to identify a list of answer documents using a skipped inverted
file. On the other hand, an unskipped compressed index might take as long
as two seconds; and an uncompressed index would take a similar length of
time.
For comparison, it is also interesting to estimate the performance of

another indexing method advocated for conjunctive Boolean queries—the
bit-sliced signature file [Faloutsos and Christodoulakis 1984; Sacks-Davis
et al. 1987]. In this case at least 10 bit slices of 212KB each (one slice per
query term, each of one bit per document in the collection) must be fetched
and conjoined. Transfer time alone accounts for more than a second. The
comparison becomes even more decisive on queries involving fewer terms.
The inverted-file index becomes faster, because fewer terms and lists must
be fetched. But with a signature file index some minimal number of bit
slices must always be processed to reduce false match rates to an accept-
able level, usually in the range 6–12. Moreover, a signature file index is
typically several times larger than a compressed inverted file, even after
the insertion of skips.
Multilevel signature file organizations reduce processing time by forming

“supersignatures” for blocks of records, so that record signatures for a block
are investigated only if all query terms appear somewhere in the block
[Kent et al. 1990; Sacks-Davis et al. 1987]. While they reduce the amount of
data transferred from disk during query evaluation, these methods do not
reduce the size of the index. Nor do they address the other drawbacks of
signature files: the need to check for false matches, the difficulties pre-
sented by long records that set a high proportion of the bits in their
signatures, and the lack of support for ranked queries (but see Croft and
Savino [1988]).

4.3 Additional Levels of Skipping

Given that the insertion of skips reduces query processing time by up to
60–80%, an obvious extension is to allow indexing into the list of skips—
that is, to apply the same solution recursively.
Consider a second level of skipping, where p2 synchronization points are

provided into the list of p1 records. Making the same assumptions as above,
we have

Td 5 tdS2p2 1
kp1

p2

1
kp

2p1
D ,

which is minimized when

p2 5 ~1/ 2!k2/3p1/3

p1 5 ~1/ 2!k1/3p2/3.

Self-Indexing Inverted Files • 365

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.



This yields

Td 5 3tdk2/3p1/3,

which, when k 5 60 and p 5 60,000, is 0.004 seconds, a further saving of
0.005 seconds. In this case the index contains p 1 2p1 1 2p2 pointers,
which is a 25% overhead on the Tr time, and makes the total time T 5
0.037 seconds, a slight additional gain.
In the limit, with h levels of skipping and p1, p2, . . . , ph synchroniza-

tion points, we have

Td 5 tdS2ph 1 O
i51

h21 kpi

pi11

1
kp

2p1
D

which is minimized by

pi 5 ~1/ 2!ki/~h11!p ~h2111!/~h11!

with minimal value

Td 5 td~h 1 1!kh/~h11!p1/~h11!.

This latter expression, when considered as a function of h, is itself
minimized when

h 5 S loge pkD 2 1.

Using this “minimal CPU” set of values, the total processing time is

T 5 td~h 1 1!kh/~h11!p1/~h11! 1 trS p 1 2 O
i51

h

piD .
For the same example values of p and k, the CPU cost is minimized when
h 5 6 and when there are six levels of skips; the nominal CPU time
decreases to Td 5 0.003 seconds, but the total number of skips at all levels
is over 17,000, an overhead of nearly 60% on the inverted list. The increase
in reading time absorbs all of the CPU gain, and with h 5 6 the total cost
climbs back up to 0.051 seconds.
Table III shows calculated costs of various levels of skipping using this

model. The first row shows the cost if neither compression nor skipping are
employed. The second shows the cost when the index is compressed, but no
skips inserted.
Other overheads associated with multilevel skipped indexes mean that

there is little likelihood of improvement beyond that obtained with one
level of skipping.
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4.4 Implementation

Since the exact value of k 5 uCu that will be used while processing any
given inverted list depends on the terms in the query and is highly
variable, it is appropriate to make a simple approximation. With this in
mind, several different inverted files were built with skips inserted into
each list assuming that k had some fixed value for all of the terms in the
query. Let L be the value of k for which the index is constructed. The
assumed values of L, and the resultant size of each index, are shown in
Table IV. In all cases the d-gaps were coded using a Golomb code, the fd,t
values with a g code, and both components of the skips with a Golomb
code, as described in Section 2. To ensure that inverted files did not
become too large, we imposed a minimum group size, requiring that
every group contain at least four pointers.
Small values of k are likely to occur for terms processed late in a Boolean

query, so the L 5 1 inverted file should yield the best performance on
queries with many terms. On the other hand, short queries will have high
values of k, so the L 5 10,000 index should perform well for queries of just
a few terms. There is, of course, no gain from skipping if the query consists
of a single term.
The most expensive regime—the use of variable skips of as little as four

pointers with L 5 100,000—increases the inverted file size by about 25%.
However, the original inverted file without skipping is compressed to less
than 10% of the actual text being indexed, and in this context the space
cost of skipping is still small.
Full concordances—in which the index records not only the documents

containing each term, but also their word number location within those
documents—would also benefit from the insertion of skips. These more
detailed indexes are, of necessity, somewhat larger and are typically about
25% of the text that they index. Skipping will be of even greater benefit in
this context, since index entries are longer and since more decoding is
avoided.

Table III. Predicted Processing Time in Seconds ( p 5 60,000 and k 5 60)

h p12( i51
h pi Td Tr T

— 60,000 '0 0.180 0.180

0 60,000 0.150 0.030 0.180
1 61,898 0.009 0.031 0.040
2 66,600 0.004 0.033 0.037
3 72,906 0.003 0.036 0.039
4 80,046 0.003 0.040 0.043
5 87,662 0.003 0.044 0.047
6 95,560 0.003 0.048 0.051

Self-Indexing Inverted Files • 367

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.



4.5 Performance on Boolean Queries

The time taken to process the sample Boolean queries, for unskipped
indexes and skipped indexes constructed with L equal to 1, 100, and
10,000, is shown in Figure 6. Each point is the average of five runs on an
otherwise idle Sun Sparc 10 Model 512 using local disks and is the CPU
time taken from when the query is issued until the list of answer document
numbers is finalized. It does not include the time taken to retrieve and
display answers. The different curves show the time spent decoding in-
verted lists, for each of the skipped inverted files and for an unskipped
index. For a five-term query, for example, the L 5 100 skipped index
requires the least processor time, at about 20% of the cost of the unskipped
inverted file. As expected, when more terms are added to the queries the
smaller values of L become more economical overall, and for 20-term
queries the L 5 1 index requires less than 10% of the CPU effort of the
original index.
The elapsed time taken for queries shows the same trend, but with a

common overhead. Table V lists, for the same experiments, elapsed time
from moment of query issue until a list of answer documents has been
calculated. Note the somewhat smaller savings, caused by the fact that,
irrespective of the skipping regime being used, all of every inverted list
must still be read into memory. Even so, skipping allows answers to be
located four to six times faster than if there is no skipping, for a wide range
of query lengths. Any value 100 # L # 10,000 is appropriate for typical
queries.
As can be seen from Figure 6, single-term queries are expensive because

of computations that must be done on a “per-answer” basis and which
dominate the cost of inverted-list processing when the number of answers
is large. The most expensive of these operations in our paged database is
resolving a list of paragraph numbers into a list of unique document
numbers. For example, in the nonpaged version of TREC just 0.2 seconds is
required to determine the list of 47,052 answer documents that contain the
term “expanded”; but 4.7 seconds is required for the same query in the
corresponding paged TREC. The difference is the cost of resolving 60,610
page numbers into the same final list of 47,052 document numbers. Queries

Table IV. Size of Skipped Inverted Files

Parameter

Size

MB %

No Skipping 184.36 100

L 5 1 186.14 101
L 5 10 188.95 102
L 5 100 194.74 106
L 5 1,000 205.38 111
L 5 10,000 220.33 120
L 5 100,000 230.21 125
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with only a small number of answers are, of course, spared this cost, and
this is why the curves in Figure 6 initially decrease.
Another way to include skipping in an index is to vary the L parameter

for each inverted list, rather than use the same value for the entire
inverted file. Because the terms in any query are processed in increasing ft
order, there might be some advantage to supposing that the number of
candidates is large when ft is small, and small when ft is large. There
would, however, still be guesswork in attempting to predict a best value of
L for each inverted list. Furthermore, Figure 6 and Table V show that,
within a broad range of query sizes, the time taken is relatively insensitive
to the exact value of L used.

4.6 General Boolean Queries

Conjunctive Boolean queries are by no means the only type of query
supported by retrieval systems. More generally, queries can be formed as a

Fig. 6. CPU time required to process Boolean queries.

Table V. Elapsed Time Required to Process Boolean Queries, in Seconds

Number of terms Unskipped

Skipped

L 5 10,000 L 5 100 L 5 1

2 1.48 1.33 1.37 1.46
4 1.22 0.42 0.42 0.61
8 2.03 0.50 0.25 0.28
16 3.77 0.82 0.29 0.23
32 7.33 1.54 0.46 0.31

Self-Indexing Inverted Files • 369

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.



conjunction of disjunctions such as

(“data” OR “text” OR “index”) AND
(“compression” OR “compaction”) AND
(“strategy” OR “algorithm” OR “process” OR “method”).

Skipping can also be used to speed these queries. The inverted lists for all
of the terms in each disjunction must be simultaneously skipped through
and the candidate allowed to remain if it appears in any of them. The
initial set of candidates should be formed by fully resolving one of the
disjunctions; again, the one likely to return the smallest result should be
chosen. One rule for doing this is to suppose that there is no overlap
between the terms in any disjunction, and so choose the disjunction
containing the smallest total number of term appearances. As subsequent
conjuncts are considered, each term in the conjunct is processed with the
same value of k, so savings similar to those demonstrated above can be
expected.
Other types of high-precision query, such as those involving term prox-

imity, can also be improved by the use of skipping. Proximity and adjacency
queries rely upon a word-level index, rather than the document-level index
assumed here. In a word-level index, skips can be used not only to jump
document identifiers, but also the within-document locational information,
leading to additional savings.

5. RANKED QUERIES

Ranked queries are more like disjunctive Boolean queries than conjunctive
queries, in that any document containing any of the terms is considered as
a candidate. Nevertheless, it is possible to exploit skipping to reduce the
time taken by ranked queries. The crucial observation is that it is possible
to change from disjunctive to conjunctive mode for frequent terms without
impacting retrieval effectiveness. This change, the time savings that result,
and the effect the change has on memory requirements of ranked query
evaluation are considered in this section.

5.1 Reduced-Memory Ranking

Consider again the ranking process outlined in Figure 2. The dominant
demand on memory space is the set of accumulators A in which the cosine
contributions are built up. They could be stored in an array that has one
element for each document in the database, and this is the usual method
described in the information retrieval literature [Buckley and Lewit 1985;
Harman 1992b; Harman and Candela 1990]. Alternatively, if the number of
nonzero accumulators is small compared to the number of documents
stored, a dynamic data structure such as a balanced search tree or a hash
table can be employed to store the set of accumulators [Cormen et al. 1990].
In this case the document identifier for each nonzero accumulator must
also be stored, so that the set can be searched, together with pointers or
other structural information. In total, as many as 16 to 20 bytes of memory
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might be consumed for each nonzero accumulator, compared with four if an
array is used. Nevertheless, provided that at most 20–25% of the docu-
ments have Ad . 0 there is a net saving in space compared to storage in an
array. For the TREC queries, about 75% of the documents have nonzero
accumulators (even after the removal of stopwords), so this change is not
sensible. This means that memory space during query evaluation can be a
significant problem; for example, using an array the paged TREC consumes
over 7MB of random-access memory for accumulators. What is needed is
some heuristic for limiting the number of nonzero accumulators so that a
dynamic accumulator structure can be employed.
One simple strategy for restricting the number of accumulators is to

order query terms by decreasing weight and only process terms until some
designated stopping condition is met. Figure 7 shows a modified ranking
process in which no more terms are processed after the number of nonzero
accumulators exceeds an a priori bound K. We designate this strategy as
quit. Other possible stopping conditions that could be used at step 3c of this
algorithm would be to place a limit on the number of terms considered or on
the total number of pointers decoded or to place an upper bound on the
term frequency ft and only process terms that appear in fewer than x% of
the documents, for some predetermined value x.
Quitting has the advantage of providing a short-circuit to the processing

of inverted lists and hence faster ranking, but at the possible expense of
poor retrieval performance, depending upon how discriminating the low-
weighted terms are.
An alternative to the quit strategy is to continue processing inverted lists

after the bound on the number of accumulators is reached, but allow no
new documents into the accumulator set. This continue algorithm is illus-
trated in Figure 8. Both quit and continue generate the same set of
approximately K candidate documents, but in a different permutation, so
when the top r documents are extracted from this set and returned,
different retrieval effectiveness can be expected.
The continue algorithm has two distinct phases. In the first phase,

accumulators are added freely, as in the quit algorithm. This phase is
similar to evaluation of an OR query, and the processing of each inverted
list is a disjunctive merge of the list with the structure of accumulators. In

1. Order the words in the query from highest weight to lowest.
2. Set A 4 À; A is the current set of accumulators.
3. For each term t in the query,

(a) Retrieve It, the inverted list for t.
(b) For each ^d, fd,t& pointer in It,

i. If Ad [ A, calculate Ad 4 Ad 1 wq,t z wd,t.
ii. Otherwise, set A 4 A 1 {Ad}, calculate Ad 4 wq,t z wd,t.

(c) If uA u . K, go to step 4.
4. For each document d such that Ad [ A, calculate Cd 4 Ad/Wd.
5. Identify the r highest values of Cd.

Fig. 7. Quit algorithm for computing cosine using approximately K accumulators.

Self-Indexing Inverted Files • 371

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.



the second phase, existing accumulator values are updated, but no new
accumulators are added. This phase is more akin to evaluation of an AND
query, as some (perhaps most) of the identifiers in each inverted list are
discarded. In this phase the set of accumulators is static, and it is cheaper
at step 4b to traverse the set in document number order, comparing it
against each inverted list, than it is to search the previous dynamic
structure looking for each inverted file pointer.
Figure 9 shows the result of experiments with the quit and continue

algorithms. It plots retrieval effectiveness as a function of k, the number of
accumulators actually used. In each case k is slightly greater than the
target value K, as an integral number of inverted lists is processed for each
query. The values shown against every third point in this graph are the
average number of terms processed to yield that volume of accumulators;
for example, only 8.2 terms are needed to generate an average of 27,000
accumulators. The difference between quit and continue is marked, and
perhaps surprisingly, even the mid- to low-weight terms appear to contrib-
ute to the effectiveness of the cosine rule—ignoring them leads to signifi-
cantly poorer retrieval.
Also surprising is that the continue strategy, with a restricted numbers

of accumulators, is capable of better retrieval performance than the origi-
nal method of Figure 2 in which all documents are permitted accumulators.
In fact, retrieval effectiveness peaks when the number of accumulators is
only 1% of the number of documents, at which point an average of just
eight terms per query has been processed and allowed to create accumula-
tors. It appears that the mid- to low-weight terms, while contributing to
retrieval effectiveness, should not be permitted to select documents that
contain none of the more highly weighted terms.
Suppose that a small percentage of the documents in a collection are

permitted accumulators during ranked-query evaluation. A few infrequent
terms will be processed in disjunctive mode, but then all remaining terms
can be processed in conjunctive mode. Hence, skipping can again be
employed to improve response time. In the case of the TREC queries, p 5 ft 5

1. Order the words in the query from highest weight to lowest.
2. Set A 4 À.
3. For each term t in the query,

(a) Retrieve It.
(b) For each ^d, fd,t& pointer in It,

i. If Ad [ A, calculate Ad 4 Ad 1 wq,t z wd,t.
ii. Otherwise, set A 4 A 1 {Ad}, calculate Ad 4 wq,t z wd,t.

(c) If uA u . K, go to step 4.
4. For each remaining term t in the query,

(a) Retrieve It.
(b) For each d such that Ad [ A,

if ^d, fd,t& [ It, calculate Ad 4 Ad 1 wq,t z wd,t.
5. For each document d such that Ad [ A, calculate Cd 4 Ad/Wd.
6. Identify the r highest values of Cd.

Fig. 8. Continue algorithm for computing cosine using approximately K accumulators
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75,000 was observed, and K 5 10,000 might be chosen—in our experiments
this resulted in an average retrieval figure as good as the full cosine method.
Using these values, skipping is estimated to reduce the CPU time from 0.188
seconds per term to 0.137 seconds, making the same assumptions as before.
Hence, on a query of 42 terms, total CPU time is predicted to decrease from 7.9
seconds to about 5.8 seconds. The saving is less dramatic than for Boolean
queries, but nevertheless of value.

5.2 Experimental Results

The experiments illustrated in Figure 9 show that values of K greater than
about 0.2% of N give good retrieval effectiveness, where N is the number of
documents in the collection, and K is the accumulator target of Figure 8.
Hence, we might assume for typical TREC queries that an index con-
structed with L 5 10,000 is appropriate for general use. The value of K
used to control the query can be set differently for each request processed,
but the inverted file must be built based upon some advance supposition
about L. For Boolean queries the value of k must be guessed in advance,
but has no effect upon the correctness of the set of answers. In contrast to
this, for ranked queries it is possible to make an accurate estimate of k—it
is just a little greater than K—but the effect on retrieval accuracy cannot
be exactly predicted.
Table IV in Section 4 shows the sizes of the inverted files that were

generated for different values of L. These indexes were also used with the
continue algorithm of Figure 8 to answer the 50 queries constructed from
the TREC topics. Values of K both close to and widely differing from the
target value L for which each index was constructed were tested. The

Fig. 9. Quit versus Continue: Retrieval effectiveness.
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results of these experiments are plotted in Figure 10. The times shown are
CPU seconds, measured from the time the query is issued until a list of the
top r 5 200 documents has been determined, and include all components of
the ranking process. As before, the times do not include the time required
to locate, fetch, and present those documents.
As can be seen from Figure 10, the predictions as to running time were

accurate. In the best situation, when the number of accumulators is small,
and the inverted file has been constructed for a small number of accumula-
tors, the time has been reduced from about 9 seconds to a little over 2
seconds, a substantial saving. For more conservative values of k the
running time is halved. The analysis has also correctly predicted that time
varies with the group size and that each skipping regime performs best
when k ' L. For example, the L 5 1000 inverted file gives the best
performance when the number of accumulators is small.
We also ran experiments on the same set of queries, but without

excluding the stopwords. Some representative performance figures compar-
ing stopped and unstopped queries are shown in Table VI. In both re-
stricted accumulator cases the inverted file used was self-indexing and
constructed with L 5 10,000, and a hash table was used for the set A. The
“unlimited” results followed the description of Figure 2, and used an array
to maintain the set of accumulators, with all terms selecting candidates
and participating in the final ranking. As can be seen, retrieval perfor-
mance is largely unaffected by the stopping of high-frequency terms and
limitations on the number of accumulators, but processing time improves
with both heuristics. The column headed “Pointers decoded” records the
total number of compressed numbers processed, where each ^d, fd,t&
pointer is counted as 1, and each skip as 2. These bear a close relationship

Fig. 10. CPU time required to process ranked queries.
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to the CPU times listed in the final column. The column “Terms processed”
shows the average number of terms per query in the unlimited case and the
average number of terms per query processed in conjunctive mode and
disjunctive mode for the continue method; and, as described in Section 3.2,
the 11-point average is a measure of retrieval effectiveness.
As expected, the amount of processing time saved through the use of

skipping is much more when the query is not already stopped. This is
because the stopwords include those that are the most frequent, and it is on
frequent terms that the greatest savings can be achieved. The unstopped
TREC queries averaged 64.6 terms and over 300,000 document numbers
per term per query. With k 5 10,000 the analysis of Section 2 predicts
that an unskipped compressed index requires 0.750 seconds and a skipped
index 0.274 seconds. For a 65-term query these estimates correspond to
about 49 seconds and 18 seconds, respectively. The results of Table VI
validate these predictions. The slightly better than expected performance
improvement arises because of two factors. First, the model takes no
account of the amount of calculation required, and the restricted accumu-
lators implementation performs only a fraction of the floating-point opera-
tions of the full cosine method. Second, the inverted lists are of widely
differing length, and the savings are disproportionately greater on lists
containing many pointers.
For ranked queries there is no advantage in using more than one level of

skipping. Table VII summarizes the expected performance for ranked
queries (in the same format as previously used in Table III) for the two
situations already considered: when k 5 10,000 and p 5 75,000 (stopped
queries) and when k 5 10,000 and p 5 300,000 (unstopped queries).
If the same index is to be used for both Boolean and ranked queries then

a compromise parameter must be chosen at the time the index is con-
structed, since the value of k typical of Boolean queries is much less than
the usual range for ranked queries. For Boolean queries of 5–10 terms and
ranked queries of 40–50 terms, Figures 6 and 10 show that a value such as
L 5 1000 is a reasonable compromise. Alternatively, if speed on both types
of query is at a premium, two different indexes might be constructed. This
is not as extravagant as it may at first appear—recall that the indexes are
compressed, and each occupies just 10% of the space of the text being

Table VI. Stopped versus Unstopped Queries

Query Type
Terms

Processed

Eleven-Point
Effectiveness

(%)

Actual
Accumulators

k
Pointers
Decoded

CPU
Time
(sec)

Stopped
K 5 unlimited 42.4 17.3 1,304,115 3,131,050 12.5
K 5 10,000 6.1 1 36.3 17.3 13,238 1,617,275 5.6

Unstopped
K 5 unlimited 64.6 17.4 1,733,517 19,955,961 45.9
K 5 10,000 6.2 1 58.4 17.4 13,558 5,142,752 16.1

Index was constructed with L 5 10,000.
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indexed. Two compressed, skipped, inverted files together still consume
less than half of the space required by a single, uncompressed, inverted
index or signature file. An alternative “blocking” method for providing fast
random access to compressed inverted files has also been described recently
[Moffat et al. 1995]; this method has the advantage that the same index can
be used to improve both Boolean and ranked queries, thereby avoiding the
redundancy of maintaining two indexes.
We have focused primarily on single-user environments. However we

believe that multiuser environments provide no special problems. If, be-
cause of some particular feature of the environment, some query terms are
very commonly used by several simultaneous users then it might be that a
single full decoding of the “hot” index entries in shared memory would
allow faster processing than multiple partial decodings using the skips.
However in the general case users do not share query terms, and the
improvements we have shown will apply regardless of whether the system
is multi- or single-user.

Table VII. Predicted Processing Time in Seconds for Terms in a Ranked Query

h p12( i51
h pi Td Tr T

0 75,000 0.188 0.038 0.226
1 102,386 0.137 0.057 0.188
2 132,890 0.147 0.066 0.213
3 164,254 0.165 0.082 0.247

(a) k 5 10,000 and p 5 75,000

0 300,000 0.750 0.150 0.900
1 354,772 0.274 0.177 0.451
2 427,620 0.233 0.214 0.447
3 506,362 0.234 0.253 0.487

(b) k 5 10,000 and p 5 300,000

Table VIII. Symbols Used in this Article

Symbol Meaning Symbol Meaning

ai bit address of ith skip L skipping parameter for index
A set of accumulators N number of documents
Ad accumulator for document d p number of pointers
C set of candidates pi number of pointers at ith skip
Cd cosine for document d level
d document identifier q query
ft number of documents

containing term t
r
t

number of answers
term

fx,t frequency of t in document or td time to decode ^d, fd,t&
query x tr time to transfer ^d, fd,t&

h number of skip levels T total time
It inverted list for term t Td total decode time
k number of candidates or Tr total transfer time

accumulators wd,t weight of document d
K accumulator target Wd weight of t in document d
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Another interesting problem that we have not addressed is the effect of
skipping on the evaluation of short ranked queries. Our improvements
have come about in no small part because the TREC queries contain many
tens of terms, and so it is reasonable to partition them into an AND set and
an OR set. However, on more usual manually devised queries of perhaps 10
terms it may be inappropriate to perform this division. In this case other
techniques must be devised if query processing is to be accelerated. Note,
however, that short queries will not be processed any slower than the ones
considered here, since in our experiments the first 6–10 terms are consid-
ered in OR mode anyway, and these could reasonably be expected to be the
low-frequency terms specified in a manually constructed query for the same
topic.

6. CONCLUSIONS

We have shown that the memory and CPU time required for querying
document collections held on disk can be substantially reduced. Our tech-
niques are of particular importance when large, static, collections are being
distributed on relatively slow read-only media such as CD-ROM. In these
situations, when database access is to be on a low-powered machine, it is of
paramount importance that the text and index be compressed, that the
number of disk accesses be kept low, and that only moderate demands be
placed upon main memory and processing time.
The normal cost of the use of compression, which results in a massive

saving of space, is increased processing time. However, by introducing
skipping into the inverted lists, in effect making them self-indexing,
substantial time savings also accrue. For Boolean queries skipped and
compressed inverted lists allow both space and time savings of the order of
80% when compared with uncompressed indexes.
We have also shown that ranking can be effected in substantially less

memory than previous techniques. The saving in memory space derives
from the observation that the number of nonzero accumulators can be
safely held at a small percentage of the number of documents. Based on
this observation we have described a simple rule that allows the memory
required by the document accumulators—the partial similarities—to be
bounded. This “restricted accumulators” method then opens the way for
self-indexing inverted files to be employed to speed ranked queries. Time
savings of about 50% can be achieved without measurable degradation in
retrieval effectiveness.
In combination, the methods we have described allow three important

resources—memory space, disk space, and processing time—to be simulta-
neously reduced.
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